# MAT 201 - Notes

### Michel Liao

# September 2023

# Contents

| The Dot Product                               | 2 |
|-----------------------------------------------|---|
| The Cross Product                             | 2 |
| Lines and Planes in Space                     | 3 |
| Curves in Space and Their Tangents            | 3 |
| Arc Length in Space                           | 3 |
| Functions of Several Variables                | 4 |
| Limits                                        | 4 |
| Partial Derivatives                           | 4 |
| The Chain Rule                                | 4 |
| Directional Derivatives and Gradient Vectors  | 5 |
| Tangent Planes and Differentials              | 5 |
| Extreme Values, Saddle Points                 | 6 |
| Lagrange Multipliers                          | 7 |
| Taylor's Formula for Two Variables            | 7 |
| Double and Iterated Integrals over Rectangles | 7 |
| Double Integrals over General Regions         | 7 |
| Area by Double Integration                    | 7 |
| Double Integrals in Polar Form                | 8 |

| Triple Integrals in Rectangular Coordinates                     | 8  |
|-----------------------------------------------------------------|----|
| Applications of Triple Integrals                                | 8  |
| Triple Integrals in Cylindrical and Spherical Coordinates       | 8  |
| Substitutions in Multiple Integrals                             | 9  |
| Line Integrals of Scalar Functions                              | 9  |
| Vector Fields and Line Integrals: Work, Circulation, and Flux   | 10 |
| Path Independence, Conservative Fields, and Potential Functions | 10 |
| Green's Theorem in the Plane                                    | 11 |
| Surfaces and Areas                                              | 11 |
| Surface Integrals                                               | 12 |
| Stokes' Theorem                                                 | 13 |
| The Divergence Theorem                                          | 13 |

# 12.3: The Dot Product

| • $oldsymbol{u}\cdotoldsymbol{v}= oldsymbol{u}  oldsymbol{v} \cos	heta$                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|
| • Vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are orthogonal if $\boldsymbol{u} \cdot \boldsymbol{v} = 0$ .                 |
| • $oldsymbol{u}\cdotoldsymbol{u}= oldsymbol{u} ^2$                                                                            |
| • $\mathrm{proj}_{oldsymbol{v}}oldsymbol{u} = rac{oldsymbol{u}\cdotoldsymbol{v}}{oldsymbol{v}\cdotoldsymbol{v}}oldsymbol{v}$ |

# 12.4: The Cross Product

٠

$$\boldsymbol{u} \times \boldsymbol{v} = (|\boldsymbol{u}||\boldsymbol{v}|\sin\theta)\boldsymbol{n}$$

- Nonzero vectors  $\boldsymbol{u}$  and  $\boldsymbol{v}$  are parallel iff  $\boldsymbol{u} \times \boldsymbol{v} = 0$ .
- ٠

 $\boldsymbol{u} \times (\boldsymbol{v} \times \boldsymbol{w}) = (\boldsymbol{u} \cdot \boldsymbol{w})\boldsymbol{v} - (\boldsymbol{u} \cdot \boldsymbol{v})\boldsymbol{w}$ 

- $|\boldsymbol{u} \times \boldsymbol{v}|$  is the area of a parallelogram.
- $|(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}|$  is the volume of a parallelpiped.

### 12.5: Lines and Planes in Space

• A vector equation for the line L through  $P_0(x_0, y_0, z_0)$  parallel to  $\boldsymbol{v}$  is

$$\boldsymbol{r}(t) = \boldsymbol{r}_0 + t\boldsymbol{v}$$

• The plane through  $P_0(x_0, y_0, z_0)$  normal to  $\boldsymbol{n} = A\hat{i} + B\hat{j} + C\hat{k}$  is

$$\mathbf{n} \cdot P_0 P = 0$$
 or  $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$ 

– Note:  $\boldsymbol{n} = \langle A, B, C \rangle$ 

•

•

- Two planes are parallel iff their normals are parallel, or  $n_1 = kn_2$  for some scalar k.
- The angle between planes is the angle between their normal vectors.

#### **13.1:** Curves in Space and Their Tangents

• Graph 3D curves by looking only at 2 variables at a time.

$$\boldsymbol{v}(t) = \frac{d\boldsymbol{r}}{dt}$$

• If r is a differentiable vector function and the length of r(t) is constant, then

$$\boldsymbol{r} \cdot \frac{d\boldsymbol{r}}{dt} = 0.$$

– Note: You can prove this is true by taking the dot product of  $\mathbf{r}(t) = c$  with itself.

# 13.2: Integrals of Vector Functions; Projectile Motion

$$\int \boldsymbol{r}(t) \; dt = \boldsymbol{R}(t) + \boldsymbol{C}$$

### 13.3: Arc Length in Space

• The length of a smooth curve  $\mathbf{r}(t)$ ,  $a \le t \le b$  traced as t increases from a to b is

$$L = \int_{a}^{b} |\boldsymbol{v}| \, dt.$$

• 
$$s(t) = \int_{t_0}^t \sqrt{[x'(\tau)]^2 + [y'(\tau)]^2 + [z'(\tau)]^2} \, d\tau = \int_{t_0}^t |v(\tau)| \, d\tau$$
• 
$$T = \frac{v}{|v|}$$

#### 14.1: Functions of Several Variables

- A point in a region R in the xy-plane is an **interior point** of R if a disk drawn around it is entirely in R.
- A point is a **boundary point** if a disk drawn around it lies outside of *R* and inside of *R*.
- A region is **open** if it consists entirely of interior points.
- A region is **closed** if it contains all of its boundary points.
- A region is **bounded** if it lies within a disk of finite radius.
- A region is **unbounded** if it is not bounded.

### **14.2:** Limits

### 14.3: Partial Derivatives

- If partial derivatives of f(x, y) exist and are continuous throughout a disk centered at  $(x_0, y_0)$ , f is continuous at  $(x_0, y_0)$ .
- If f(x, y) and its partial derivatives  $f_x, f_y, f_{xy}, f_{yx}$  are defined throughout an open region containing a point (a, b) and are continuous at (a, b), then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

• If a function f(x, y) is differentiable at  $(x_0, y_0)$ , then f is continuous at  $(x_0, y_0)$ .

# 14.4: The Chain Rule

•

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

• If instead x = g(r, s), y = h(r, s), and z = k(r, s),

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial r} + \frac{\partial w}{\partial z}\frac{\partial y}{\partial r}$$

- Note that it's very similar for  $\frac{\partial w}{\partial s}$ 

• Suppose F(x, y) = 0 defines y as a differentiable function of x. Then at any point where  $F_y \neq 0$ ,  $\frac{dy}{dx} = \frac{-F_x}{F_y}$ 

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and  $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$ 

# 14.5: Directional Derivatives and Gradient Vectors

• The gradient of f(x, y) is the vector

$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j}$$

• If f(x, y) is differentiable in an open region containing  $P_0(x_0, y_0)$  then

$$D_{\boldsymbol{u}}f(P_0) = \nabla f(P_0) \cdot \boldsymbol{u}.$$

- Note that  $\boldsymbol{u}$  must be a unit vector.

- f increases most rapidly in the direction of the gradient vector  $\nabla f$  at P. The directional derivative in this direction is  $D_{\boldsymbol{u}}f = |\nabla f|$
- Similarly, f decreases most rapidly in the direction of  $-\nabla f,$  so  $D_{\boldsymbol{u}}f=-|\nabla f|$
- Any direction  $\boldsymbol{u}$  orthogonal to a gradient  $\nabla f \neq 0$  leads to a directional derivative of 0.
- At every point  $(x_0, y_0)$  in the domain of a differentiable function f(x, y), the  $\nabla f$  is normal to the level curve through  $(x_0, y_0)$ .
- •

$$\frac{d}{dt}f(\boldsymbol{r}(t)) = \nabla f(\boldsymbol{r}(t)) \cdot \boldsymbol{r}'(t)$$

- Note this is very similar to the chain rule from 1D calc.

### 14.6: Tangent Planes and Differentials

• The tangent plane to the level surface f(x, y, z) = c at a point  $P_0 = (x_0, y_0, z_0)$  is

$$\nabla f(P_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$$

• The **normal line** to the level surface at  $P_0$  is

$$\langle x_0 + y_0 + z_0 \rangle + \langle f_x(P_0), f_y(P_0) + f_z(P_0).$$

• The plane tangent to the surface z = f(x, y) at  $(x_0, y_0, f(x_0, y_0))$  at the point  $P_0(x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0))$  is

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$$

• Estimate the change in the value of a function f by moving a small distance ds from a point  $P_0$  in the direction  $\boldsymbol{u}$  by

$$df = (\nabla f(P_0) \cdot \boldsymbol{u}) ds$$

• The **linearization** of a function f(x, y) at a point  $(x_0, y_0)$  is

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

• Let f(x, y) have continuous first and second derivatives in some rectangle R. Let M be the upper bound for  $|f_{xx}|, |f_{xy}|, |f_{yy}|$  in R. Then the **error** E(x, y) of the linear approximation satisfies

$$|E(x,y)| = \frac{1}{2}M(|x-x_0| + |y-y_0|)^2$$

• If we move from  $(x_0, y_0)$  to a point  $(x_0 + dx, y_0 + dy)$  nearby, the total differential of f is

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy.$$

### 14.7: Extreme Values, Saddle Points

- First Derivative Test for Local Extrema: If f(x, y) has a local maximum or minimum at an interior point of (a, b) and if the first partial derivative exist there, then  $f_x(a, b) = 0$  and  $f_y(a, b) = 0$ .
- An interior point where both  $f_x$  and  $f_y$  are zero or where both  $f_x$  and  $f_y$  and do not exist is a **critical point** of f.
  - Note: Every global max/min must be a local max/min. Every local max/min must be a critical point.
- Second Derivative Test for Local Extrema:
  - f has a local maximum at (a, b) if  $f_{xx} < 0$  and  $f_{xx}f_{yy} f_{xy}^2 > 0$  at (a, b).
  - f has a local minimum at (a, b) if  $f_{xx} > 0$  and  $f_{xx}f_{yy} f_{xy}^2 > 0$  at (a, b).
  - f has a saddle point at (a, b) if  $f_{xx}f_{yy} f_{xy}^2 < 0$  at (a, b).
  - The test is **inconclusive** if  $f_{xx}f_{yy} f_{xy}^2 = 0$ .

### 14.8: Lagrange Multipliers

• Suppose that f(x, y, z) and g(x, y, z) are differentiable and  $\nabla g \neq \mathbf{0}$  when g(x, y, z) = 0. To find the local maximum and minimum values of f subject to the constraint g(x, y, z) = 0, find the values of x, y, z and  $\lambda$  that satisfy

$$\nabla f = \lambda \nabla g$$
 and  $g(x, y, z) = 0$ .

• Remember to check the boundaries.

#### 14.9: Taylor's Formula for Two Variables

•  

$$f(x,y) = f(0,0) + xf_x + yf_y + \frac{1}{2}(x^2f_{xx} + 2xyf_{xy} + y^2f_{yy})$$

$$|E| \le \frac{M}{3!}(|x - x_0| + |y - y_0|)^3$$

# 15.1: Double and Iterated Integrals over Rectangles

- Fubini's Theorem: If f(x, y) is continuous throughout a region R, then  $\iint \int f(x, y) dx \, dy = \iint f(x, y) dy \, dx$ .
  - Note that if R is rectangular, we can switch the bounds without redrawing the region R.

### **15.2:** Double Integrals over General Regions

- Fubini's Theorem also applies just make sure you change your bounds of integration.
- dy dx: Sketch the region. Draw an arrow parallel to the y axis in the direction of +y. Where it enters is its lower bound. Where it leaves is its upper bound. The x-limits are the ones that include all vertical arrows you can draw through region R.
- dx dy: Same thing as above but draw arrows parallel to x axis instead.

### **15.3:** Area by Double Integration

• The **area** of a closed, bounded region R is

$$A = \iint_R dA.$$

• The **average value** of f over R is

$$\frac{1}{\text{Area}} \iint_R f \, dA.$$

## 15.4: Double Integrals in Polar Form

$$\iint_R f(r,\theta) \ dA = \iint f(r,\theta) \ r \ dr \ d\theta.$$

• Change of coordinates works the same as for  $\oint 15.3.$ 

## 15.5: Triple Integrals in Rectangular Coordinates

$$V = \iiint_D dV$$

• The average value of F over D is

$$\frac{1}{\text{volume of D}} \iiint_D f \ dV$$

# **15.6:** Applications of Triple Integrals

$$M = \iiint_D \text{density}(x, y, z) \ dV$$

• Center of mass:

•

•

•

•

s:  

$$\overline{x} = \iiint_D x \text{ density}(x, y, z) \ dV$$

$$\overline{y} = \iiint_D y \text{ density}(x, y, z) \ dV$$
$$\overline{z} = \iiint_D y \text{ density}(x, y, z) \ dV$$

# **15.7:** Triple Integrals in Cylindrical and Spherical Coordinates

• Cylindrical Coordinates:

$$x = r \cos \theta, \ y = r \sin \theta, \ z = z, \ \tan \theta = y/x$$

– Remember:

$$dV = r \ dz \ dr \ d\theta$$

and  $\theta$  always comes from the x-axis

• Spherical Coordinates:

$$x = \rho \sin \phi \cos \theta, \ y = \rho \sin \phi \sin \theta, z = \rho \cos \phi$$

– Remember:

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

and  $0 \le \phi \le \pi$ 



•

# 15.8: Substitutions in Mulliple Integrals

• The **Jacobian** of the coordinate transformation x = g(u, v) and y = h(u, v) is

$$J(u,v) = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$$

• Under the transformation x = g(u, v) and y = h(u, v),

$$\iint_R f(x,y) dx \ dy = \iint_G f(g(u,v),h(u,v)) \frac{\partial(x,y)}{\partial(u,v)} du \ dv$$

• For triple integrals, it's basically the same thing.

## 16.1: Line Integrals of Scalar Functions

• If f is defined on a curve C given parametrically by  $\mathbf{r}(t) = \langle g(t), h(t), k(t) \rangle$ , then the line integral is

$$\int_{a}^{b} f(g(t), h(t), k(t)) |\boldsymbol{v}(t)| dt$$

# 16.2: Vector Fields and Line Integrals: Work, Circulation, and Flux

• The gradient field of a differentiable function f(x, y, z) is the field of gradient vectors

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

- Evaluate the line integral of  $F = M(x, y, z)\hat{i} + N(x, y, z)\hat{j} + P(x, y, z)\hat{k}$ along C:  $\mathbf{r}(t) = \langle g(t), h(t), k(t) \rangle$ :
  - 1. Substitute x = g(t), y = h(t), x = k(t) into M(x, y, z), N(x, y, z) and P(x, y, z) of F.
  - 2. Find the derivative velocity vector  $\frac{dr}{dt}$ .
  - 3. Evaluate

$$\int_{C} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{a}^{b} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \frac{d\boldsymbol{r}}{dt} dt$$

• Line integrals with respect to dx, dy, dz:

$$\int_C M \, dx + N \, dy + P \, dz,$$

where  $\int_C M(x, y, z) \, dx = \int_a^b M(g(t), h(t), k(t)) \, g'(t) \, dt$ , and so on for N and P.

- The flow along the curve is just the line integral along that curve.
- The flux of a vector field F = M(x, y)i + N(x, y)j if n is the outward pointing normal vector is

$$\int_C \boldsymbol{F} \cdot \boldsymbol{n} = \oint_C M \, dy - N \, dx$$

- If the motion is counterclockwise,  $n = T \times k$ . If it's clockwise,  $n = k \times T$ , where k is the unit vector in the z-direction and  $T = \frac{r'(t)}{|r'(t)|}$ .

# **16.3:** Path Independence, Conservative Fields, and Potential Functions

- If the line integral  $\int_C \mathbf{F} \cdot d\mathbf{r}$  along all paths C from A to B is the same, then the integral is **path independent** and the field  $\mathbf{F}$  is **conservative**.
- If F is a vector field defined on open region D and  $F = \nabla f$  for some scalar function f on D, then f is a **potential function for F**.

• Line integrals in conservative fields:

$$\int_{A}^{B} \boldsymbol{F} \cdot d\boldsymbol{r} = \int_{A}^{B} \nabla f \cdot d\boldsymbol{r} = f(B) - f(A)$$

- If  $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$  around every closed curve in D, the field  $\mathbf{F}$  is conservative and vise versa.
- Let  $\mathbf{F} = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$  be over an open, simply connected domain. Then,  $\mathbf{F}$  is conservative iff

$$P_y = N_z, M_z = P_x, \text{ and } N_x = M_y.$$

• Maybe the thing about exact differential forms....?

### 16.4: Green's Theorem in the Plane

• The circulation density (curl  $F \cdot k$ ) of a vector field F = Mi + Nj at the point (x, y) is

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}.$$

• The flux density (divergence) of a vector field F = Mi + Nj at the point (x, y) is  $\partial M = \partial N$ 

$$\operatorname{div} \boldsymbol{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}.$$

• Green's Theorem:

$$\oint_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \oint_{C} M \, dx + N \, dy = \iint_{R} (\operatorname{curl} \mathbf{F} \cdot \mathbf{k}) \, dx \, dy$$
$$- \oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{C} M \, dy - N \, dx = \iint_{R} (\operatorname{div} \mathbf{F}) \, dx \, dy$$

### 16.5: Surfaces and Areas

• A surface is parametrized by

$$\boldsymbol{r}(u,v) = f(u,v)\boldsymbol{i} + g(u,v)\boldsymbol{j} + h(u,v)\boldsymbol{k}$$

• The **area** of a smooth surface parametrized by  $\boldsymbol{r}, a \leq u \leq b, c \leq v \leq d$  is

$$A = \iint_{R} |\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}| dA = \int_{c}^{d} \int_{a}^{b} |\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}| du \, dv$$

• The surface area differential is

$$d\sigma = |\boldsymbol{r}_u \times \boldsymbol{r}_v| du \, dv$$

- In spherical coordinates, it's useful to remember  $d\sigma = |\mathbf{r}_{\phi} \times r_{\theta}| = R^2 \sin \phi \ d\theta \ d\phi$
- The area of the surface F(x, y, z) = c over a closed and bounded plane region R is

$$\iint_{R} \frac{|\nabla F|}{|\nabla F \cdot \boldsymbol{p}|} dA,$$

where  $\boldsymbol{p} = \boldsymbol{i}, \boldsymbol{j}$ , or  $\boldsymbol{k}$  is normal to R and  $\nabla F \cdot \boldsymbol{p} \neq 0$ .

• For a graph z = f(x, y) over a region R in the xy plane, the surface area formula is

$$A = \iint_R \sqrt{f_x^2 + f_y^2 + 1} \, dx \, dy$$

### 16.6: Surface Integrals

Formulas for a Surface Integral of a Scalar Function

**1.** For a smooth surface S defined **parametrically** as  $\mathbf{r}(u, v) = f(u, v)\mathbf{i} + g(u, v)\mathbf{j} + h(u, v)\mathbf{k}, (u, v) \in R$ , and a continuous function G(x, y, z) defined on S, the surface integral of G over S is given by the double integral over R,

$$\iint\limits_{S} G(x, y, z) d\sigma = \iint\limits_{R} G(f(u, v), g(u, v), h(u, v)) \left| \mathbf{r}_{u} \times \mathbf{r}_{v} \right| du dv.$$
(2)

**2.** For a surface *S* given **implicitly** by F(x, y, z) = c, where *F* is a continuously differentiable function, with *S* lying above its closed and bounded shadow region *R* in the coordinate plane beneath it, the surface integral of the continuous function *G* over *S* is given by the double integral over *R*,

$$\iint_{S} G(x, y, z) d\sigma = \iint_{R} G(x, y, z) \frac{|\nabla F|}{|\nabla F \cdot \mathbf{p}|} dA,$$
(3)

where **p** is a unit vector normal to *R* and  $\nabla F \cdot \mathbf{p} \neq 0$ .

**3.** For a surface *S* given **explicitly** as the graph of z = f(x, y), where *f* is a continuously differentiable function over a region *R* in the *xy*-plane, the surface integral of the continuous function *G* over *S* is given by the double integral over *R*,

$$\iint_{S} G(x, y, z) \, d\sigma = \iint_{R} G(x, y, f(x, y)) \, \sqrt{f_{x}^{2} + f_{y}^{2} + 1} \, dx \, dy. \tag{4}$$

- •
- The flux (or surface integral) of a vector field F over a smooth surface S having chosen normal unit vectors n is

$$\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \, d\sigma.$$

. .

- The outward normal is given by

$$\hat{n} = \frac{\boldsymbol{r}_u \times \boldsymbol{r}_v}{|\boldsymbol{r}_u \times \boldsymbol{r}_v|}.$$

So,

$$\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \, d\sigma = \iint_{R} \boldsymbol{F} \cdot (\boldsymbol{r}_{u} \times \boldsymbol{r}_{v}) \, du \, dv$$

- If S is a part of a level surface g(x, y, z) = c, then

$$oldsymbol{n} = \pm rac{
abla g}{|
abla g|},$$

 $\mathbf{SO}$ 

$$\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \, d\sigma = \iint_{R} \boldsymbol{F} \cdot \frac{\pm \nabla g}{|\nabla g \cdot \boldsymbol{p}|} dA.$$

# 16.7: Stokes' Theorem

•

•

$$\operatorname{curl} \boldsymbol{F} = \nabla \times \boldsymbol{F}$$

• Stokes' Theorem: Let F = Mi + Nj + Pk. Then, the circulation of F around boundary curve C in the counterclockwise direction with respect to the surface's unit normal vector n equals the integral of the curl vector field over S, a piecewise smooth surface:

$$\oint_C \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_S (\nabla \times \boldsymbol{F}) \cdot \boldsymbol{n} \, d\sigma$$

- Right hand rule! Curl fingers in the direction of C counterclockwise and your thumb is the normal vector.

curl grad = 
$$\mathbf{0}$$
 or  $\nabla \times \nabla f = \mathbf{0}$ 

# 16.8: The Divergence Theorem

• The divergence of a vector field F = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k is

$$\operatorname{div} \boldsymbol{F} = \nabla \cdot \boldsymbol{F}.$$

• The flux of vector field F across a piecewise smooth oriented closed surface S in the direction of the surface's outward unit normal n equals the triple integral of the divergence of F over the region D enclosed by the surface:

$$\iint_{S} \boldsymbol{F} \cdot \boldsymbol{n} \, d\sigma = \iiint_{D} \nabla \cdot \boldsymbol{F} \, dV$$

• For every vector field  $\boldsymbol{F}$ ,

•

$$\operatorname{div}(\operatorname{curl} \boldsymbol{F}) = 0$$

Green's Theorem and Its Generalization to Three Dimensions

| Tangential form of Green's Theorem: | $\oint_C \mathbf{F} \cdot \mathbf{T}  ds = \iint_R  (\nabla \times \mathbf{F}) \cdot \mathbf{k}  dA$      |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Stokes' Theorem:                    | $\oint_C \mathbf{F} \cdot \mathbf{T}  ds = \iint_S  (\nabla \times \mathbf{F}) \cdot \mathbf{n}  d\sigma$ |
| Normal form of Green's Theorem:     | $\oint_C \mathbf{F} \cdot \mathbf{n}  ds = \iint_R \nabla \cdot \mathbf{F}  dA$                           |
| Divergence Theorem:                 | $\iint_{S} \mathbf{F} \cdot \mathbf{n}  d\sigma = \iiint_{D} \nabla \cdot \mathbf{F}  dV$                 |
|                                     |                                                                                                           |