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1 Introduction to Vectors

A vector is denoted by v⃗ = ⟨1, 6⟩.

2 Introduction to Vector Operations

A unit vector is a vector with magnitude equal to 1: |v̂| = 1.

3 Introduction to Dot & Cross Products

3.1 Dot Product

Given v⃗ = ⟨v1, v2, v3⟩ and w⃗ = ⟨w1, w2, w3⟩, we express the dot product of v⃗
and w⃗ as

v⃗ · w⃗ = v1w1 + v2w2 + v3w3 = |v⃗||w⃗| cos θ.

3.2 Cross Product

v⃗ × w⃗ =

∣∣∣∣∣∣
î ĵ k̂
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
= (v2w3 − v3w2)̂i− (v1w3 − v3w1)ĵ + (v1w2 − v2w1)

The vector formed by v⃗× w⃗ is orthogonal to the plane spanned by v⃗ and w⃗.
The direction is determined by the right-hand rule.
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3.3 Projections

A vector projection proju⃗v⃗ is the “shadow” of a vector v⃗ on the line spanned
by a non-zero vector u⃗, cast by a light source whose rays are perpendicular to
the second vector.

The scalar component of a projection is denoted by

compu⃗v⃗ = |v⃗| cos θ =
v⃗ · u⃗
|u⃗|

.

4 Equations of Lines and Planes

The vector equation of a line is

r⃗(t) = tv⃗ + r⃗0,

where r⃗(t) is the position function, v⃗ is a vector parallel to the line, r⃗0 is the
position vector of a fixed point on the line, and t is the parameter.

The vector equation of a plane is

n⃗ ·
−−→
P0P = 0,

where n⃗ is a normal vector to the plane, P0 = (x0, y0, z0) is an arbitrary fixed
point on the plane, and P = (x, y, z) is an arbitrary point in R3.

5 Vector Functions & Curves

A vector function, denoted r⃗(t), is a function whose input is a paramter t and
output is a vector r⃗(t). For a 3-D vector function

r⃗(t) = ⟨x(t), y(t), z(t)⟩,

the coordinate functions are x(t), y(t) and z(t).
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6 Derivatives of Vector Functions

A vector derivative, denoted r⃗′(t) or dr⃗
dt , is computed by differentiating the

components of r⃗(t):
r⃗′(t) = ⟨x′(t), y′(t), z′(t)⟩.

The angle of intersection between two curves is the angle between their
tangent vectors at that point.

The unit tangent vector, denoted T̂ , is a tangent vector that has unit
length: |T̂ | = 1.

A vector differential is an infinitesimal displacement vector: dr⃗ = r⃗′(t)dt.

7 Topic 2.4

7.1 Gradient

The gradient of a multivariable function is computed by

1. Computing the partial derivatives of the function

2. Writing the vector field whose components are the corresponding partial
derivatives

∇⃗f(x, y, z) = ⟨fx, fy, fz⟩.

The gradient of a function is orthogonal to level sets (contour lines) and
indicate the direction in which the function increases most rapidly.

7.2 Directional Derivatives

The directional derivative of a function f indicated by a unit vector u⃗ is

Dûf = ∇⃗f · û.

7.3 Relationships Between Gradient and Directional Deriva-
tives

Dûf = ∇⃗f(P ) · û

= |∇⃗f(P )|(1) cos θ

= |∇⃗f(P )| cos θ
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8 Optimizations Subject to Constraint - Lagrange
Multiplier Method

The Lagrange multiplier, denoted λ, is the parameter in the equation

∇⃗f = λ∇⃗g,

where f is the function to be optimized and g is the constraint.

9 Double Integrals

The standard double integral is∫∫
D

f(x, y) dA,

where D is the region of integration, f is the function, and dA is an infinitesi-
mally small area differential. For Cartesian coordinates, dA = dx dy.

Integrate from the inside outwards. Pretend the variable you’re not inte-
grating is a constant.

9.1 Finding Regions of Integration

Draw the region on a Cartesian plane. Draw an arrow parallel to the axis
corresponding to the inner limit. The lower bound is where the arrow enters
the region. The upper bound is where the arrow exits the region.

Project the region onto the other axis. That forms your lower and upper
bounds for that variable.

9.2 Polar Coordinates

Recall the following:

• r ≥ 0

• θ is measured counterclockwise from the x-axis

• ω ≤ θ ≤ ω + 2π

• x = r cos θ

• y = r sin θ

With Cartesian coordinates, we have dA = dx dy. With Polar coordinates,
we have dA = r dθ dr = r dr dθ.
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10 Triples Integrals & Solids of Revolution

A solid of revolution is a 3-D region generated by spinning a 2-D planar
region around an axis of revolution.

11 Scalar Line Integrals

Recall:
The vector line element dr⃗ is a vector that represents an infinitesimal dis-

placement along a curve. The scalar line element ds is the magnitude of dr⃗:
ds = |dr⃗|.

dr⃗ = r⃗ ′(t)dt

So,
A line integral is an integral where the region of integration is a curve. A

scalar line integral in R3 is ∫
c

f(x, y, z) ds,

where c is the curve, f is the integrand, and ds is a scalar line element.

12 Vector Fields

A vector field is a function where the input is a point and the output is a
vector. In R3,

F⃗ (x, y, z) = P (x, y, z)̂i+Q(x, y, z)ĵ +R(x, y, z)k̂,

where P,Q,R are scalar-valued functions, or the component functions of the
field.

13 Vector Line Integrals

Vector line integrals measure the interaction of a vector field F⃗ with an
object moving through the field on the path c. These are very similar to scalar
line integrals, except we use the expression∫

c

F⃗ · dr⃗.

To evaluate the integral we:

• Find limits of integration using the curve information given.

• Replace x, y, z in the integrand with x(t), y(t), and z(t) (from r⃗(t)).

• Compute dr⃗ = r⃗ ′(t)dt.
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14 Conservative Vector Fields

A conservative vector field is a gradient field. A vector field is conservative
(meaning the vector field F⃗ is the gradient of the potential of the vector field

F⃗ = ∇f) iff the partial derivatives of its component functions are equal.
In other words, we have the equation

F⃗ (x, y) = P (x, y)̂i+Q(x, y)ĵ.

The vector field F⃗ is conservative iff ∂P
∂y = ∂Q

∂x .

14.1 Finding the Potential Function

Drive P (x, y) with respect to x, where the constant from integrating is a function
of y. Do the opposite for Q(x, y).

14.2 Properties of Line Integrals over Conservative Vector
Fields

• Path independence

– The line integrals of two curves with the same start and end points
are the same.

• ∫
c

∇⃗f · dr⃗ = 0

– c is closed

• Fundamental Theorem of Line Integrals: If F⃗ = ∇⃗f , then∫
c

∇⃗f · dr⃗ = f(b)− f(a),

where a and b are the start and end points, respectively, of the curve c.

15 Green’s Theorem

Given that C is a closed (start and ends at the same point), simple (no self-
intersection) curve oriented counter-clockwise in the xy-plane, D is the region

enclosed by the curve, and F⃗ (x, y) = P (x, y)̂i+Q(x, y)ĵ, then∫
C

F⃗ (x, y) · dr⃗ =

∫ ∫
D

∂Q

∂x
− ∂P

∂y
dA.
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16 Scalar Surface Integrals

Scalar surface integrals are similar to double integrals where the region of
integration is 2-D, but with scalar surface integrals, the region of integration S
is a 2-D surface floating in R3.∫ ∫

S

f(x, y, z) dS.

Integrate by

• Parameterize S: r⃗(u, v) = x(u, v)̂i+ y(u, v)ĵ + z(u, v)k̂

• Restrict f(x, y, z) to S by replacing x with x(u, v), y with y(u, v), and so
on.

• Compute dS = |dS⃗| = | ∂r⃗∂u × ∂r⃗
∂v |du dv

Note that dS = dA when the surface is parallel to one of the 2-D coordinate
axes.

17 Vector Surface Integrals∫ ∫
S

F⃗ (x, y, z) · dS⃗.

Integrate by

• Parameterize S: r⃗(u, v) = x(u, v)̂i+ y(u, v)ĵ + z(u, v)k̂

• Restrict the vector field F⃗ (x, y, t) to the surface S by replacing F⃗ (x, y, t)

with F⃗ (r⃗(u, v))

• Compute dS⃗ = ±( ∂r⃗∂u × ∂r⃗
∂v )du dv

– Assign the positive or negative corresponding to the orientation given
in the problem.

18 Curl & Divergence

The nabla operator is defined as

∇⃗ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

Given that we have a vector field F⃗ (x, y, z) = P (x, y, z)̂i + Q(x, y, z)ĵ +

R(x, y, z)k̂,

curl(F⃗ ) = ∇⃗ × F⃗ .
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div(F⃗ ) = ∇⃗ · F⃗ .

Curl starts with a vector field F⃗ and goes to another vector field curl(F⃗ ).

Divergence starts with a vector field F⃗ and ends with a scalar-valued function
div(F⃗ ).

If curl(F⃗ ) = 0⃗, we call the vector field curl free or irrotational. If div(F⃗ ) = 0,
we say the vector field is divergence free or incompressible.

18.1 Geometry of Curl & Divergence

Curl measures the local rotation of a vector field around a point. Divergence
measures the local expansion/contraction of a vector field around a point.

19 Divergence Theorem

S is a closed surface oriented outwards, W is enclosed by S, and F⃗ (x, y, z) =

P (x, y, z)̂i+Q(x, y, z)ĵ +R(x, y, z)k̂, then∫ ∫
S

F⃗ · dS⃗ =

∫ ∫ ∫
W

div(F⃗ )dV.
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