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1 Brief Notes

1.1 Introduction

This summary includes the most important ideas you need to know for the AP
exam. I would use this as a supplement to a prep book or other study guides.

In addition, be sure to check out the progress checks on MyAP (they closely
mirror the actual prompts on the exam, especially hypothesis testing).

1.2 Contact Me

There may be typos. If you notice any or have suggestions on improving the
summary, please email me at michel.liao@systemgreen.org.
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2 Exploring One-Variable Data

2.1 Definitions

• A variable is a characteristic that changes from one individual to another.

• Categorical variables take on values that are categories or group la-
bels. Quantitative variables take on numerical values for a measured
or counted quantity.1

2.2 Describe a Distribution

• Shape: Symmetric, skewed left, skewed right, unimodal, bimodal, and
uniform.

• Center: Mean, median, and Q1 and Q3 (median of first and second half,
respectively).2

• Variability (spread): Range, IQR (Q3-Q1), and standard deviation (the
typical distance each value is away from the mean), and variance (square
of SD).

• Unusual features: Outliers, gaps, and clusters.

– More than 1.5IQR below Q1 or more than 1.5IQR above Q3

– Two or more standard deviations above/below the mean.

– Mean, SD, and range are highly influenced by outliers (nonresistant).
Median and IQR aren’t greatly affected (resistant).

∗ Use median and IQR for skewed distributions. Use mean and
SD for symmetric distributions.

∗ Skewed right distribution, mean > median. Skewed left distrti-
bution, mean < median.

2.3 Boxplots

• Use a five-number summary:

1. Minimum

2. Q1

3. Median (Q2)

4. Q3

5. Maximum

1You can distinguish a quantitative variable because it makes sense to take an average of
those values. E.g., you wouldn’t average zip codes, so it’s a categorical variable (even though
it has a number value).

2Don’t include the median.
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6. Outliers

• When there are outliers, plot them as dots and change the minimum and
maximum lines to be the lowest and highest values in the sample that
aren’t outliers.

2.4 Comparing Distributions

• Use shape, center, spread, and outliers.

• Use comparative words like same, similar, greater, less than, and use con-
text.

2.5 The Normal Distribution

• The percentile is the percent of data values less than or equal to a given
value.

– The value of [] is at the pth percentile. About p percent of the values
are less than or equal to [].

• A standardized score is given by

standardized score =
data value−mean

standard deviation
=⇒ z-score =

xi − µ
σ

.

– The value of [] is [z-score] standard deviations above/below the mean.

• The Empirical Rule says that 68%, 95%, and 99.7% of the data is within
1, 2, and 3 SD of the mean, respectively.

– Exploit symmetry (divide by 2).

• Normalcdf and invNorm are cool. Set µ = 0, σ = 1 to find z-score stuff.

3 Exploring Two-Variable Data

3.1 Relationships

• If distributions aren’t the same for each group, then there is an association
between two variables.

• Join relative frequency is a cell divided by table total. Marginal
relative frequency is a row/column total divided by table total. Con-
ditional relative frequency is for a specific part (row/column) of a
two-way table.

• Because the distribution of conditional relative frequencies is different for
each age group, the two variables are associated.
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• Explanatory variable explains the changes in the response variable.

• Describe a scatter plot using direction (positive/negative), form (linear/non-
linear), strength (strong/ weak), and unusual features (clusters, apparent
outliers).

3.2 Linear Regression Models

• Extrapolation occurs when we made predictions outside the interval of
our current data’s x-values. Current trends may not continue. Used to
answer ”is this prediction reliable?”

• Interpreting correlation coefficient: strength, direction, linear, context.

• Residual = y − ŷ.

• For a good fit, residual plot should show apparent randomness and cen-
tered at 0. With a bad fit, there is a pattern, which our model failed to
capture. A linear model may not be the best fit.

3.3 Least Squares Regression Line

• A linear model that minimizes the sum of the squared residuals.

• A LSRL contains the point (x, y).

•
b = r(

sy
sx

).

• Interpreting slope: For every 1 [unit] increase in [explanatory variable],
our model predicts an average increase/decrease of [slope] in [response
variable].

• Interpreting y-intercept: When the [explanatory variable] is zero [units],
our model predicts that the response variable would be [y-intercept].

– The y-intercept is only meaningful in contexts where the explanatory
varaible can reasonably take on a value of 0.

• Interpreting the coefficient of determination (r2): r2% of the variation
in the [response variable] can be explained by the linear relationship/our
model with the [explanatory variable].3

• High-leverage points are points with unusually large/small x-values
(away from x). They usually have a big effect on the slope/y-intercept of
the LSRL.

3r2 cannot be negative.

5



• Influential points are points that, if removed, will change the slope, y-
intercept, or correlation substantially (high-leverage points (change slope/y-
int) and outliers (change correlation)).

• If the data shows non-linear relationships, we can transform the data (log,
squaring, exponentiating).

4 Collecting Data

• Generalize when your sample is randomly selected or representative of
that population.

• Observational studies are taken without imposing treatments on in-
dividuals and cannot infer cause and effect. Experiments are where
different treatments are imposed upon subjects and can infer cause and
effect (if well done).

4.1 Data Collection

• Census collects data from all individuals in a population.

• Simple random sample is easier than a census; every group of a given
size has an equal chance of being chosen.

• Cluster random sample is where a population is divided into clusters
of individuals near one another and an SRS of clusters is taken. All indi-
viduals within the chosen clusters are sampled.

– You want clusters that are heterogeneous and clusters that are similar
to each other.

• Stratified random sample is where a population is divided into strata,
based on a similar characteristic and an SRS is taken within (not the
whole) each stratum. The selected individuals combine to the larger sam-
ple.

– You want strata that are homogeneous and not similar to each other.

• Systematic random sample is where you choose a start point and
sample at a fixed periodic interval.

• Bias is a systematic tendency to favor certain responses over others.

– Undercoverage bias is where a part of the population has a reduced
chance of being in the sample.

– Nonresponse bias is when individuals chosen for a sample don’t
respond.
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– Voluntary response bias is when invitations are sent to all indi-
viduals, but people choose to participate.

– Question wording bias is when survey questions are confusing or
leading.

– Self-reported response bias is when individuals inaccurately re-
port their own traits.

• Identifying sources of bias:

1. Identify the population and sample.

2. Explain how the sample might differ from the population.

3. Explain how it leads to overestimate or underestimate.

4.2 Experimental Design

• Confounding variable is a variable that is related to the explanatory
variable that influences the response variable and may create a false per-
ception of association between the two.

• Well-designed experiment:

– Compares at least two treatment groups (one can be a control).

– Random assignment of treatments.

– Replication (enough experimental units to find individual differences).

– Control confounding variables.

• Randomized block design ensures that units in each block are similar
with regard to a blocking variable, which helps separate natural variability
from differences due to the blocking variable. (Matched pairs is similar
where the blocks are of size 2 or each subject receives both treatments4).

• Placebo is a fake treatment similar to the treatments being tested.

4.3 Inference and Experiments

• Random assignment allows us to conclude that large observed changes are
not by chance (statistically significant). It allows us to contribute that
the treatment caused the effect.

• Conclusions from samples can be attributed to the population when the
sample is representative of the population (random selection).

4Matched pairs can only be applied when there are 2, and only 2, treatments.
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5 Probability, Random Variables, and Probabil-
ity Distributions

• Random process is when we are aware of possible outcomes but have
no idea what the outcome will be.

• Law of large numbers says that the simulated probability gets closer
to the theoretical probability with more flips. Also, the variability from
the true probability decreases.

• Generate random integers with math =⇒ PROB =⇒ randInt(.

5.1 Probability

• For equally likely outcomes,

P (A) =
# of successes

of possible outcomes
.

• Valid probability distributions are characterized by the sum of all proba-
bilities being 1.

• Complement of P (A) is P (A′) or P (AC), which is equal to 1− P (A).

• The probability of two mutually exclusive events is 0.

•
P (A|B) =

P (A ∩B)

P (B)
.

• Events A and B are independent if and only if

P (B|A) = P (B), P (B|A′) = P (B), P (A|B) = P (A), P (A|B′) = P (A).

In other words, A and B are independent if

P (A ∩B) = P (A) · P (B).

•
P (A ∪B) = P (A) + P (B)− P (A ∩B).

5.2 Random Variables & Probability Distributions

• Discrete random variables take an integer number of values. Continu-
ous random variables can be any real number.5

• When multiplying/dividing distributions by a number, the center and
spread changes. When adding/subtracting by a number, the center changes.

5Kind of any... not really, though.
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• Describe a probability distribution using shape, center, and spread.

• Discrete random variable calculations: Use L1 and L2 =⇒ stat =⇒
1-Var Stats =⇒ List as your x, FreqList as your y

• For independent random variables X and Y and real numbers a and b:

– The mean of
aX + bY = aµx + bµy.

– The standard deviation of

aX + bY =
√
a2σ2

x + b2σ2
y.

5.3 Binomial Distribution

• Define your variables, e.g., let X = ...

• The binomial setting involves repeated trials where the following condi-
tions are met:

1. B - binary; two possible outcomes: success or failure

2. I - independent trials

3. N - fixed number of trials, n

4. S - same probability of success, p

• binomcdf for less than or equal to a certain number of successes and bi-
nompdf for exactly a certain number of successes.

• The mean (expected value) of a binomial random variable X is

µx = np.

• The standard deviation of a binomial random variable X is

σx =
√
np(1− p).

5.4 Geometric Distribution

• Properties of a geometric setting:

1. Two possible outcomes: success/failure

2. Independent trials

3. Same probability of success

• Find the first success at some x with geometpdf. Find the probability the
first success occurs at the first or second or third or fourth... or xth trial
with geometcdf.

• The mean (expected value) of a geometric random variable X is µx = 1
p .

• The standard deviation of a geometric random variable X is σx =
√
1−p
p .

9



6 Sampling Distributions

• Different samples from the same population produce different statistics
(means/proportions). If you take many samples, the proportion/mean
will cluster around the true population proportion/mean.

6.1 Normal Distribution Revisited

• Use normalcdf and invNorm (make sure to label your values).

• Given random variables X and Y, you can find the mean and standard
deviation of the distribution X ± Y with

µX±Y = µX ± µy, σX±Y =
√
σ2
X + σ2

Y .

• The distribution of X ± Y can be modeled with a normal distribution if
the probability distribution of each X and Y is approximately normal and
independent.

• Sample size must be large enough for a binomial distribution to be ap-
proximately normal.

1. Unimodal, roughly symmetric, bell-shaped

2. Empirical rule roughly applies

6.2 Central Limit Theorem

• A sampling distribution of a statistic is the distribution of values for the
statistic for all possible samples of the same size from a given population.

• If the population distribution is normal, the sampling distribution is nor-
mal (no matter how small the sample size).

• Central limit theorem (CLT) says that when the sample size is suffi-
ciently large (≥ 30), the sampling distribution of the mean of a random
variable will be approximately normal.

• A randomization distribution is reallocating the response values to
treatment groups. We can use it to find the likelihood of an observed
outcome happening by chance alone.

6.3 Biased and Unbiased Point Estimates

• A sample statistic is a point estimator of the corresponding population
parameter.

• An unbiased estimator occurs when, on average, the value of the es-
timator is equal to the population parameter (e.g. mean is but range
isn’t).
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6.4 Sample Proportions

•
µp̂ = p.

•

σp̂ =

√
p(1− p)

n
.

– This assumes that the sample size is less than 10% of the population
size, or the 10% condition (or sampling with replacement).

• Large counts condition says the sampling distribution of p̂ will be ap-
proximately normal when

np ≥ 10 and n(1− p) ≥ 10.

• Interpreting µp̂: For all random samples of size n =[] from this population,
the sample proportions of [random variable] will have a mean of [µp̂].

• Interpreting σp̂: For all random samples of size n =[] from this population,
the sample proportions of [random variable] typically vary by about [σp̂]
from the population proportion of µ.

6.5 Difference in Sample Proportions

•

• The sampling distribution of p̂1 − p̂2 will be approximately normal when
the large counts condition is met for both sampling distributions.

• Interpreting the mean and standard deviation follow a similar format as
for one sample proportion.

6.6 Sample Means

•
µx = µ.

•
σx =

σ√
n
.

– Assumes the 10% condition is met and independence.

• The sampling distribution of x is approximately normal when the popu-
lation distribution is approximately normal or the CLT applies (n ≥ 30).

• Interpreting µx: For all random samples of size n =[] from this population,
the sample mean [random variable] will have a mean of [µx].
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• Interpreting σx: For all random samples of size n =[] from this population,
the sample mean [random variable] will typically vary by about σx from
the population mean of [µx].

6.7 Difference in Sample Means

•
µx1−x2

= µ1 − µ2.

•

σx1−x2 =

√
σ2
1

n1
+
σ2
2

n2
.

– Assuming the 10% condition is met and independence.

• The sampling distribution of x1 − x2 will be approximately normal when
both population distributions are approximately normal or both sampling
distributions meet the CLT (≥ 30).

• Interpreting the mean and standard deviation follow a similar format as
for one sample mean.

7 Inference for Proportions

7.1 Confidence Intervals

1. Construct a C% confidence interval for [p = population parameter].

2. To estimate the proportion of successes in a single population, use a one-
sample z interval for p.

3. Conditions:6

• Random sample from the population

• 10% condition 10n < N.

• Large counts condition np̂ ≥ 10 and n(1− p̂) ≥ 10.

4. CI = point estimate± (critical value)(standard error of statistic)7 or stat
=⇒ TESTS =⇒ 1-PropZInt.

5. Conclusion: We are C% confident that the interval [] to [] captures the
[population parameter].

6. Interpreting the confidence level: In repeated random sampling with the
same sample size, approximately C% of the C% confidence intervals would
capture the [population parameter].

6The first two conditions establish independence and the third establishes normality.
7The standard error of a statistic is how far the statistic typically varies from the parameter.

It’s like standard deviation (σ) except replace p with p̂
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7. We can decrease the margin of error by increasing the sample size or
decrease the confidence level.

7.2 Significance Tests for a Proportion

1. Let p = [proportion of all...]

2. H0: p = 0.5.8

Ha: p 6= 0.5 or p > 0.5 or p < 0.5.

• When the Ha inequality is > or <m it’s called one-sided. When it’s
6=, it’s called two-sided.

3. Identify the significance level. If there isn’t one, you can use α = 0.05.

4. One-sample z test for p.

5. Conditions:

(a) Random sampling

(b) 10% condition 10n < N.

(c) Large counts condition np0 ≥ 10, n(1− p0) ≥ 10.9

6. standardized test statistic = sample statistic−null value of the parameter
standard deviation of the statistic .

7. stat =⇒ TESTS =⇒ 1-PropZTest.

8. Interpreting p-value: Assuming that [null hypothesis], there is a [p-value]
probability we get a sample proportion as extreme or more extreme than
[sample proportion] in either direction (or greater than or less than) by
chance alone in a random sample of [].

9. Conclusion: Since the p-value of [] ≥≤ α =[], we reject/fail to reject
the null hypothesis in favor of the alternative hypothesis. There is/isn’t
convincing evidence that [Ha in context].

7.3 Potential Errors

• Type I error occurs when we find convincing evidence for Ha but H0 is
actually true.

• Type II error occurs when we do not find convincing evidence for Ha but
H0 is actually false.

• When H0 is true, P (Type I Error) = α.

• Decreasing the probability of a Type I error increases the probability of a
Type II error.

8p won’t always be equal to 0.5, it’s just a placeholder.
9p0 refers to the proportion in the null hypothesis.
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• Power is the probability of avoiding a Type II error, or the probability
of correctly rejecting a false null. In other words, P (Type II error) =
1− power.

• Power of a test is greater when sample size (n) increases, significance level
(α) increases, standard error decreases, or the true parameter value is
farther from the null.

7.4 Confidence Interval for Two Proportions

1. Construct a C% confidence interval for the difference in p1 = [] and p2 =
[].

2. Two-sample z interval for a difference in proportions.

• Works when two random samples are selected or subjects are ran-
domly assigned to two groups in an experiment.

3. Conditions:

(a) Two random samples (doesn’t apply to experiments).

(b) 10% condition for both samples if no replacement. If the data is
from two groups that are randomly assigned, we just check they were
randomly assigned.

(c) Large counts condition for both samples.

4. stat =⇒ TESTS =⇒ 2-PropZInt.

5. Conclusion: We are C% confident that the interval [] to [] captures [dif-
ference in proportions].

7.5 Significance Tests for Two Proportions

1. Let p1 =[] and p2 =[].

2. H0: p1 = p2 or p1 − p2 = 0

Ha: p1 6= p2 or p1 < p2 or p1 > p2.

3. Two-sample z test for a difference in proportions.

• Works with two random samples or subjects are randomly assigned
to two groups in an experiment.

4. A pooled proportion is combining the success rates of each of the two
samples.10

5. Conditions:

10This is because we assume p1 = p2.
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(a) Random samples.

(b) 10% condition for both samples.

(c) Large counts condition, but use the pooled proportion, p̂C . So, we
check n1p̂C ≥ 10, n2(1− p̂C) ≥ 10, n2p̂C ≥ 10, n2(1− p̂C) ≥ 10.

6. The test statistic uses p̂C instead of the population proportion.

7. Interpreting p-value: Assuming H0 is true, there is a [p-value] proba-
bility of getting a difference in proportions of [observed difference] or
[greater/less/more different], by chance alone.

8. Conclusion: Since the p-value of [] ≤≥ α = [] we reject H0. There is/is
not convincing evidence that [Ha in context].

8 Inference for Means

• z∗ is only useful when we know σ, but that rarely happens. So, we use s
instead of σ and t∗ instead of z∗.

8.1 Confidence Intervals for Population Means

1. Construct a C% confidence interval for [µ =].

2. One-sample t interval for population mean

3. Conditions:

(a) Random sample.

(b) 10% condition.

(c) CLT applies or sample is free of strong skewness and outliers (boxplot
or dotplot).

4. For the margin of error, since we don’t know the population standard
deviation, we use standard error instead. The degrees of freedom is n− 1.

• We can decrease margin of error by increasing sample size or decreas-
ing the confidence level.

5. stat =⇒ TESTS =⇒ TInterval.

6. Interpreting CI: We are C% confident that the interval from [] to [] captures
the [parameter to be estimated].

7. Interpreting confidence level: In repeated random sampling with the same
sample size, approximately C% of those C% confidence intervals will cap-
ture the population mean.
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8.2 Significance Test for Population Means

1. Let µ = [population mean].

2. H0: µ = [value].

Ha: µ 6= [value] or µ > [value] or µ < [value].

3. One-sample t test for a population mean.

4. Conditions

(a) Random sample or randomized experiment.

(b) 10% condition.

(c) CLT applies or no strong skewness or outliers.

5. stat =⇒ TESTS =⇒ TTest.

6. Interpreting p-value: Assuming H0 is true, there is a [p-value] probabil-
ity of getting a sample mean of [observed mean] or [greater/less/more
different], by chance alone in the random sample.

7. Conclusion: Because the p-value of [] ≤> α =[], we reject/fail to reject
H0. There is/is not convincing evidence that [Ha in context.]

8.3 Confidence Intervals for Difference of Two Means

1. Construct a C% confidence interval for the difference in µ1 = [context]
µ2 = [context].

2. Two-sample t-interval for the difference in population means

3. Conditions

(a) Two random samples or randomized experiment.

(b) 10% condition.

(c) CLT applies for both or no strong skewness/outliers for both.

4. stat =⇒ TESTS =⇒ 2-SampTInt.

5. Interpreting CI: We are C% confident that the interval from [] to [] captures
the [parameter to be estimated].

6. Conclusion: Because the p-value of [] ≤> α =[], we reject/fail to reject
H0. There is/is not convincing evidence that [Ha in context.]
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8.4 Significance Test for Difference in Population Means

1. Let µ = [population mean].

2. H0: µ = [value].

Ha: µ 6= [value] or µ > [value] or µ < [value].

3. Two-sample t test for a difference in population means.

4. Conditions

(a) Random sample or randomized experiment.

(b) 10% condition to both.

(c) CLT applies or no strong skewness or outliers to both.

5. stat =⇒ TESTS =⇒ TTest.

6. Interpreting p-value: Assuming H0 is true, there is a [p-value] probabil-
ity of getting a sample mean of [observed mean] or [greater/less/more
different], by chance alone in the random sample.

7. Conclusion: Because the p-value of [] ≤> α =[], we reject/fail to reject
H0. There is/is not convincing evidence that [Ha in context.]

9 Chi-Square Tests

• Expected value of a two way table is (row total)(column total)/(table
total) or use matrices.

9.1 Chi-Square Goodness-of-Fit Test

1. H0: The proportions for the categories in a single categorical variable are
equal to the specified values. (List out each proportion and include ”where
p1 is...”)

Ha: At least one of the proportions is not as specified in the null hypoth-
esis.

2. Identify the procedure.

3. Conditions:

(a) Data should come from random sample or randomized experiment.

(b) Sample should be less than or equal to 10% of the population.

(c) All expected counts greater than 5 (show using a table/calculated
values).

4. Calculate using χ2GOF-Test. Remember df = categories− 1.
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5. Interpret p-value: Assuming the proportions of a single categorical vari-
able as stated in the null hypothesis is true, there is a [p-value] probability
of getting a chi-square statistic as extreme as the one in the study or more
extreme, by chance alone in random sampling/assignment.

6. Conclusion: Since the p-value of [] ≤> α = [], we reject/fail to reject H0.
This is/is not convincing evidence that [Ha in context].

7. Contributions: Identify which one had the largest contribution toward the
chi-square test statistic using the contributions list.

9.2 Chi-Square Test for Homogeneity or Independence

1. If 1 categorical variable and 2+ populations, homogeneity. If 2 categorical
variables and 1 population, independence.

2. Homogeneity:

H0: There is no difference in the distribution of [categorical variable]
across populations or treatments.

Ha: There is a difference in the distribution of [categorical variable] across
populations or treatments.

Independence

H0: There is no association between [categorical variable] and [categorical
variable] in a given population.

Ha: There is an association between [categorical variable] and [categorical
variable] in a given population.11

3. Conditions:

(a) Random sampling or randomized experiment.

(b) Sample size is less than 10% of population.

(c) All expected counts are at least 5 (show using matrix or calculated
values).

4. Calculate using χ2-Test, where df = (rows− 1)(columns− 1).

5. Interpret p-value: Assuming the H0 is true, there is a [p-value] probability
of getting a χ2 of [calculated chi-square] or greater, by chance alone in the
random sample(s) or random assignment.

6. Conclusion: Because the p-value of [] ≤> α =, we reject/fail to reject H0.
There is/is not convincing evidence that [Ha in context].

11Or you can use [categorical variable] and [categorical variable] are/aren’t independent.
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10 Regression Models

10.1 Confidence Intervals

1. Construct a C% confidence interval for β = [].

2. One-sample t interval for β.

3. Conditions:12

• Random sample or randomized experiment.

• The true relationship between x and y is linear.

• σy does not vary with x/is the same with all values of x.

• For a particular value of x, the y-values are normally distributed
(dotplot or CLT).

4. Describe using shape, center (µb = β), and spread (σb = σ
σx
√
n

)13.

5. Calculation:14 stat =⇒ TESTS =⇒ LinRegTInt

6. Decrease margin of error by increasing sample size or decrease the confi-
dence level.

7. Interpret the CI: We are C% confident that the interval from [] to [] cap-
tures the slope of the population regression line [context].

8. Interpreting confidence level: In repeated random sampling with the same
sample size, approximately C% of C% confidence intervals created will
capture the slope of the population regression line.

10.2 Test for Slope

1. H0: β = 0.

Ha: β 6= 0 or β > 0 or β < 0.

2. T-test for slope

3. Conditions:

• Random sample or randomized experiment.

• 10% condition.

• The true relationship between x and y is linear.

• σy does not vary with x/is the same with all values of x.

12Scatter plots, residual plots, and dot plots are helpful for justification.
13The standard deviation formula works if the 10% condition applies. Use sx to estimate

σx and s to estimate σ.
14Remember, df = n− 2.
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• For a particular value of x, the y-values are normally distributed
(dotplot or CLT).

4. Calculation: stat =⇒ TESTS =⇒ LinRegTTest15

5. Interpret p-value: Assuming [H0 in context], there is an approximately
[p-value] probability of getting a sample regression line with a slope of []
or greater by chance alone in a random sample of [].

6. Conclusion: Because the p-value of [] ≤ > α = [], we reject/fail to reject
H0. There is/isn’t convincing evidence that [Ha in context].

15df = n− 2.
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